首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   66篇
  国内免费   1篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   11篇
  2016年   19篇
  2015年   27篇
  2014年   30篇
  2013年   29篇
  2012年   29篇
  2011年   24篇
  2010年   13篇
  2009年   14篇
  2008年   19篇
  2007年   23篇
  2006年   22篇
  2005年   22篇
  2004年   13篇
  2003年   19篇
  2002年   15篇
  2001年   10篇
  2000年   14篇
  1999年   13篇
  1998年   10篇
  1997年   6篇
  1996年   15篇
  1995年   9篇
  1994年   6篇
  1993年   7篇
  1992年   7篇
  1991年   10篇
  1990年   8篇
  1989年   6篇
  1988年   8篇
  1987年   14篇
  1986年   4篇
  1985年   13篇
  1984年   10篇
  1983年   7篇
  1982年   10篇
  1981年   17篇
  1980年   14篇
  1979年   18篇
  1978年   12篇
  1977年   10篇
  1976年   5篇
  1974年   6篇
  1973年   9篇
  1972年   6篇
  1970年   6篇
排序方式: 共有660条查询结果,搜索用时 15 毫秒
61.
Studies on the digestion process in fish can elucidate some aspects of nutritional physiology. The movements of food items in the alimentary tract are observed using X‐radiography techniques, and nutrient absorption along the alimentary tracts (expressed as relative percentage absorption gradient) is calculated based on the ash contents of adjacent samples. Apparent digestibility coefficient (ADC) values for protein (80–94%), lipid (90–97%), carbohydrate (80.5%) and energy (85–96%) calculated from laboratory‐fed whiting were comparable with those for other fish fed suitable diets. Considerable proportions of all nutrients were absorbed in the short region (anterior intestine/pyloric caeca) but active absorption continued for all nutrients in transit along the longer middle and posterior intestinal segments. In wild whiting samples, the estimated ADC values were protein (65%), lipid (81%) and energy (65%) in passage from the stomach to the rectal region. It was not possible to ascertain the prey in intestinal samples, which probably contained a mixture of species. Sprats and brown shrimps probably dominated the diet, based on biochemical analysis of stomach contents, but polychaetes and other crustaceans could have made a minor contribution.  相似文献   
62.
Evidence suggests that dab and rainbow trout are able to quickly adjust their food intake to an appropriate level when offered novel diets. In addition day-to-day and meal-to-meal food intake varies greatly and meal timing is plastic. Why this is the case is not clear: Food intake in fish is influenced by many factors, however the hierarchy and mechanisms by which these interact is not yet fully understood. A model of food intake may be helpful to understand these phenomena; to determine model type it is necessary to understand the qualitative nature of food intake. Food intake can be regarded as an autoregressive (AR) time series, as the amount of food eaten at time t will be influenced by previous meals, and this allows food intake to be considered using time series analyses. Here, time series data were analysed using nonlinear techniques to obtain qualitative information from which evidence for the hierarchy of mechanisms controlling food intake may be drawn. Time series were obtained for a group of dab and individuals and a group of rainbow trout for analysis. Surrogate data sets were generated to test several null hypotheses describing linear processes and all proved significantly different to the real data, suggesting nonlinear dynamics. Examination of topography and recurrence diagrams suggested that all series were deterministic and non-stationary. The point correlation dimension (PD2i) suggested low-dimensional dynamics. Our findings suggest therefore that any model of appetite should create output that is deterministic, non-stationary, low-dimensional and having nonlinear dynamics.  相似文献   
63.
The low-density lipoprotein receptor (LDLR) plays a pivotal role in cholesterol homeostasis. However, the role of genetic variations in the 3′UTR of the LDLR in relation to plasma cholesterol has been largely understudied. Six SNPs, G44243A, G44332A, C44506G, G44695A, C44857T and A44964G, within the 5′ region of the 3′UTR fall into three common haplotypes, GGCGCA, AGCACG, and GGCGTA, occurring at frequencies of 0.45, 0.31 and 0.17, respectively, in Caucasians (n = 29) and 0.13, 0.13 and 0.38, respectively, in African Americans (n = 32), with three other haplotypes occurring at lesser frequencies. In a tissue culture based system, expression of a reporter gene carrying a 3′UTR that includes the 1 kb nucleotide sequences corresponding to the AGCACG or GGCGTA was 70 or 63%, respectively, of the same sequence with GGCGCA. Genotyping of two “haplotype tagging” SNPs, C44857T and A44964G, in the Atherosclerosis Risk in Communities (ARIC) study population showed that in Caucasians, but not in African Americans, the inferred TA haplotype had a significant LDL-cholesterol lowering effect. The adjusted LDL-cholesterol levels in the TA/TA diplotypes were lower by 6.10 mg/dl in men (P < 0.001) and by 4.63 mg/dl in women (P < 0.01) than in individuals with other diplotypes. Caucasian men homozygous for CA, in contrast, showed significantly higher LDL-cholesterol (P < 0.04), lower HDL-cholesterol (P < 0.02) and higher LDL/HDL ratios (P < 0.001). Thus our data shows that 3′UTR sequences that cause higher reporter gene expression in vitro are associated in Caucasians with plasma lipid profiles indicative of higher cardiovascular risk, suggesting that further studies of quantitative variants in the LDLR gene will be valuable. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   
64.
Gypsy moth larvae become increasingly resistant to lethal infection by the Lymantria dispar M nucleopolyhedrovirus (LdMNPV) as they age within the fourth instar. Newly molted larvae are most sensitive to infection, mid-instars are least sensitive, and late-instars display intermediate sensitivity. This resistance occurs whether the virus is delivered orally or intrahemocoelically. The present study reveals a nearly identical pattern of resistance in third instar larvae. An LD48 dose of polyhedra for newly molted third instars produced 18%, 10%, 8%, 25%, and 24% mortalities in larvae to which virus was orally administered at 12, 24, 48, 72, and 96 hours post-molt (hpm), respectively, which is a 6-fold reduction in mortality between newly molted larvae and mid-instars. An LD44 dose of budded virus for newly molted third instars produced 33%, 23%, 17%, 31%, and 31% mortalities when injected into larvae that were 12, 24, 48, 72, and 96 hpm, respectively, which is a 2.6-fold reduction in mortality between newly molted larvae and mid-instars, indicating that approximately half of this resistance is midgut-based and half is systemically based. Doubling the viral dose did not overcome developmental resistance whether the virus was delivered orally or intrahemocoelically. In addition, time to death was significantly affected by the time post-molt at which the insect was inoculated with the virus. We suggest that intrastadial developmental resistance may affect both the ecology and management of the gypsy moth.  相似文献   
65.
66.
Postmortem changes in protein composition up to 24 h in bovine longissimus thoracis muscle were investigated by two-dimensional gel electrophoresis and MALDI-TOF MS/MS. A total of 47 spots were significantly changed the first 24 h postmortem. The 39 identified proteins can be divided into five groups: metabolic enzymes, defense and stress proteins, structural proteins, proteolytic enzymes, and unclassified proteins. The identified metabolic enzymes are all associated with ATP-generating pathways, either the glycolytic pathway or energy metabolism. In addition, several defense and stress proteins were changed in abundance in this study. These findings contribute to a better understanding of the biochemical processes during postmortem storage of meat.  相似文献   
67.
Glutathione (GSH) is essential for many aspects of plant biology and is associated with jasmonate signaling in stress responses. We characterized an Arabidopsis (Arabidopsis thaliana) jasmonate-hypersensitive mutant (jah2) with seedling root growth 100-fold more sensitive to inhibition by the hormone jasmonyl-isoleucine than the wild type. Genetic mapping and genome sequencing determined that the mutation is in intron 6 of GLUTATHIONE SYNTHETASE2, encoding the enzyme that converts γ-glutamylcysteine (γ-EC) to GSH. The level of GSH in jah2 was 71% of the wild type, while the phytoalexin-deficient2-1 (pad2-1) mutant, defective in GSH1 and having only 27% of wild-type GSH level, was not jasmonate hypersensitive. Growth defects for jah2, but not pad2, were also seen in plants grown to maturity. Surprisingly, all phenotypes in the jah2 pad2-1 double mutant were weaker than in jah2. Quantification of γ-EC indicated these defects result from hyperaccumulation of this GSH precursor by 294- and 65-fold in jah2 and the double mutant, respectively. γ-EC reportedly partially substitutes for loss of GSH, but growth inhibition seen here was likely not due to an excess of total glutathione plus γ-EC because their sum in jah2 pad2-1 was only 16% greater than in the wild type. Further, the jah2 phenotypes were lost in a jasmonic acid biosynthesis mutant background, indicating the effect of γ-EC is mediated through jasmonate signaling and not as a direct result of perturbed redox status.Glutathione (GSH) is an essential thiol of most higher organisms, including plants. Primarily found in the reduced form, its roles in maintaining a reduced intracellular state are numerous and well characterized (Foyer and Noctor, 2011; Noctor et al., 2011). Additionally, GSH is involved in detoxifying reactive oxygen species, heavy metal detoxification through phytochelatins, elimination of xenobiotics, and signaling of plant development and stress responses (Rouhier et al., 2008).GSH is synthesized in two steps. The first links Cys to the γ-carboxyl group of Glu through an amide bond catalyzed by γ-glutamylcysteine (γ-EC) synthetase, encoded by the single gene GSH1 in Arabidopsis (Arabidopsis thaliana). Gly is then added by GSH synthetase (GSH-S), also encoded by a single gene (GSH2). GSH is typically present at millimolar levels in plants, and although γ-EC is normally present at only a few percent of this amount, there is evidence that γ-EC has redox activities in Arabidopsis (Pasternak et al., 2008).Insertional knockouts of GSH1 are embryo lethal, and rootmeristemless1, with only 5% of wild-type GSH level, lacks a root apical meristem due to cell cycle arrest (Vernoux et al., 2000; Cairns et al., 2006). Other mutants producing 25% to 50% of wild-type GSH levels grow normally but exhibit defects under various stress conditions. For example, phytoalexin-deficient2-1 (pad2-1) and cadmium sensitive2 mutants are susceptible to pathogens and hypersensitive to Cd, respectively, while regulator of axillary meristems1 causes elevated expression of ASCORBATE PEROXIDASE2 under non-photooxidative-stress conditions (Glazebrook and Ausubel, 1994; Cobbett et al., 1998; Ball et al., 2004).GSH2 null alleles (gsh2-1 and gsh2-2) are also lethal, although plants survive to the early seedling stage (Pasternak et al., 2008). Survival past the embryo stage was attributed to partial complementation of GSH activity by γ-EC, which accumulates to excessive levels in gsh2-1, and the mutant is partially rescued by GSH supplementation. Missense and nonsense GSH2 alleles of membrane trafficking mutants (gsh2-3gsh2-5) disrupt endoplasmic reticulum (ER) organization and also arrest growth in early seedling development, while a weaker allele (gsh2-6) reached maturity but was smaller than the wild type (Au et al., 2012). A screen for reduced response to Cd also yielded a viable missense mutant of GSH2 (nonresponse or reduced response to Cd2) with approximately 75% of the wild-type GSH level (Jobe et al., 2012).Plant oxidative stress responses involve both redox signaling through GSH and jasmonate hormonal signaling, and gene expression studies have clearly linked these two signaling systems. GSH biosynthesis and metabolism genes are induced by jasmonate, while manipulating GSH level or redox status in various mutants alters expression of genes for jasmonate biosynthesis and signaling (Xiang and Oliver, 1998; Mhamdi et al., 2010; Han et al., 2013). GSH and jasmonate are also associated with protective glucosinolate production in response to insect feeding (Noctor et al., 2011). For example, pad2-1 is deficient in glucosinolates and more susceptible to insects, while several studies have shown jasmonate induces glucosinolates (Brader et al., 2001; Mikkelsen et al., 2003; Sasaki-Sekimoto et al., 2005; Schlaeppi et al., 2008). Liu et al. (2010) isolated jasmonic acid hypersensitive1 (jah1), an Arabidopsis mutant with greater inhibition of root growth than the wild type in the presence of jasmonic acid (JA). The affected gene encodes a cytochrome P450 (CYP82C3) involved in indole glucosinolate production, and this mutant was more susceptible to Botrytis cinerea.The basic mechanism of jasmonate signal transduction and some of the downstream responses emanating from it are now well understood (Browse, 2009; Wasternack and Hause, 2013). However, the mechanisms by which jasmonate and GSH coordinate their activities to mediate oxidative stress and other responses are not known. This study characterized, to our knowledge, a new jasmonate-hypersensitive mutant that accumulates excess γ-EC due to a defect in GSH2, but GSH is only modestly reduced. Results show that elevated γ-EC is deleterious to plant growth through a jasmonate-dependent mechanism.  相似文献   
68.
The aim of this study was to assess the suitability of body mass index, waist circumference, waist-to-height ratio and aerobic fitness as predictors of cardiovascular risk factor clustering in children. A cross-sectional study was conducted with 290 school boys and girls from 6 to 10 years old, randomly selected. Blood was collected after a 12-hour fasting period. Blood pressure, waist circumference (WC), height and weight were evaluated according to international standards. Aerobic fitness (AF) was assessed by the 20-metre shuttle-run test. Clustering was considered when three of these factors were present: high systolic or diastolic blood pressure, high low-density lipoprotein (LDL) cholesterol, high triglycerides, high plasma glucose, high insulin concentrations and low high-density lipoprotein (HDL) cholesterol. A ROC curve identified the cut-off points of body mass index (BMI), WC, waist-to-height ratio (WHtR) and AF as predictors of risk factor clustering. BMI, WC and WHR resulted in significant areas under the ROC curves, which was not observed for AF. The anthropometric variables were good predictors of cardiovascular risk factor clustering in both sexes, whereas aerobic fitness should not be used to identify cardiovascular risk factor clustering in these children.  相似文献   
69.
70.

Background

In vivo phosphorylation of sphingosine analogs with their ensuing binding and activation of their cell-surface sphingosine-1-phosphate receptors is regarded as the main immunomodulatory mechanism of this new class of drugs. Prophylactic treatment with sphingosine analogs interferes with experimental asthma by impeding the migration of dendritic cells to draining lymph nodes. However, whether these drugs can also alleviate allergic airway inflammation after its onset remains to be determined. Herein, we investigated to which extent and by which mechanisms the sphingosine analog AAL-R interferes with key features of asthma in a murine model during ongoing allergic inflammation induced by Dermatophagoides pteronyssinus.

Methods

BALB/c mice were exposed to either D. pteronyssinus or saline, intranasally, once-daily for 10 consecutive days. Mice were treated intratracheally with either AAL-R, its pre-phosphorylated form AFD-R, or the vehicle before every allergen challenge over the last four days, i.e. after the onset of allergic airway inflammation. On day 11, airway responsiveness to methacholine was measured; inflammatory cells and cytokines were quantified in the airways; and the numbers and/or viability of T cells, B cells and dendritic cells were assessed in the lungs and draining lymph nodes.

Results

AAL-R decreased airway hyperresponsiveness induced by D. pteronyssinus by nearly 70%. This was associated with a strong reduction of IL-5 and IL-13 levels in the airways and with a decreased eosinophilic response. Notably, the lung CD4+ T cells were almost entirely eliminated by AAL-R, which concurred with enhanced apoptosis/necrosis in that cell population. This inhibition occurred in the absence of dendritic cell number modulation in draining lymph nodes. On the other hand, the pre-phosphorylated form AFD-R, which preferentially acts on cell-surface sphingosine-1-phosphate receptors, was relatively impotent at enhancing cell death, which led to a less efficient control of T cell and eosinophil responses in the lungs.

Conclusion

Airway delivery of the non-phosphorylated sphingosine analog, but not its pre-phosphorylated counterpart, is highly efficient at controlling the local T cell response after the onset of allergic airway inflammation. The mechanism appears to involve local induction of lymphocyte apoptosis/necrosis, while mildly affecting dendritic cell and T cell accumulation in draining lymph nodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号